Stimulation of P2X7 receptors elevates Ca2+ and kills retinal ganglion cells.
نویسندگان
چکیده
PURPOSE Retinal ganglion cells are known to express ionotropic P2X(7) receptors for ATP. Stimulation of these receptors in other cells can elevate Ca(2+) and sometimes lead to cell death. This study asked whether P2X(7) receptor stimulation alters the Ca(2+) levels and viability of retinal ganglion cells. METHODS P2X(7) agonists were applied to retinal ganglion cells from neonatal rats loaded with fura-2 to examine their effect on intracellular Ca(2+) levels. The effect of P2X(7) receptor stimulation on cell viability was examined in rat retinal ganglion cells back-labeled with aminostilbamidine. RESULTS The P2X(7) agonist benzoylbenzoyl adenosine triphosphate (BzATP) led to a large, sustained increase in Ca(2+). BzATP was >100-fold more effective than ATP at raising intracellular Ca(2+), when both agonists were applied at 10 microM. The response to BzATP was enhanced threefold by removal of extracellular Mg(2+), was dependent on extracellular Ca(2+), and was prevented by brilliant blue G (BBG). BzATP led to a concentration-dependent reduction in the number of cells with a median lethal dose (LD(50)) of 35 muM. Cell death was prevented by the P2X(7) antagonists BBG and oxidized ATP, but not by 30 microM suramin, consistent with the actions of the P2X(7) receptor. BzATP activated caspases in ganglion cells, but did not lead to membrane blebbing or increased permeability to Yo-Pro-1. The L-type Ca(2+) channel blocker nifedipine attenuated cell death, suggesting excessive Ca(2+) influx contributes to the lethal effects of BzATP. CONCLUSION Short-term stimulation of the P2X(7) receptor can raise Ca(2+) in rat retinal ganglion cells, whereas sustained stimulation of the receptor can kill them.
منابع مشابه
Identification of the A3 adenosine receptor in rat retinal ganglion cells.
PURPOSE Adenosine can protect retinal ganglion cells from the death that accompanies a general ischemic challenge as well as excitotoxic death. In other tissues, both A1 and A3 adenosine receptor subtypes can mediate protection. While a role for the A1 adenosine receptor in ganglion cell protection has been established, a potential for the A3 receptor has only recently been proposed. Although t...
متن کاملATP-induced non-neuronal cell permeabilization in the rat inner retina.
The P2X7 subtype holds a special position among P2X receptors because of its ability to act both as a classical, ligand-gated ion channel, and as a permeabilization pore that can induce cell death under prolonged activation by ATP. We have shown previously that, in rat retina, P2X7 receptors are located in the inner nuclear layer and ganglion cell layer (GCL). The present study was aimed at fin...
متن کاملAdenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation.
Adenosine is a neuromodulator that activates presynaptic receptors to regulate synaptic transmission and postsynaptic receptors to hyperpolarize neurons. Here, we report that adenosine-induced hyperpolarization of retinal ganglion cells is produced by the activation of A(1) receptors, which initiates a signaling cascade that activates G-protein-coupled inwardly rectifying K(+) (GIRK) channels a...
متن کاملP2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells.
P2X7 receptor has gained an increasing importance as a drug target. One important response to P2X7 receptor stimulation is the uptake of large molecular weight tracers into cells. However, mechanism for this response is not understood clearly, but it is generally believed that a nonselective large pore protein forms this P2X7 receptor-activated permeability pathway. We examined human embryonic ...
متن کاملP2X7 receptor antagonist protects retinal ganglion cells by inhibiting microglial activation in a rat chronic ocular hypertension model
Microglial activation and the release of pro‑inflammatory cytokines occur during early glaucoma. However, the exact mechanism underlying the initiation of the microglial activation process remains unclear. Thus, the present study investigated the potential role of a purine receptor subtype, the P2X purinoceptor 7 (P2X7) receptor, during microglial activation in the retinal tissues of a rat chro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 46 6 شماره
صفحات -
تاریخ انتشار 2005